A girl in the shop was getting bullied she came to me saying I’m getting bullied I told her stand up for her self
we saved a transvestite in a tight mini skirt from a tree i thought i showed a lot of balls
Max heart and his gay cousin nickals amoto say i back out a fight when he said let's fight then last minute he said he don't want to then says i chickened out i ready to fight but his gut swolled his arms he actually looks like humpty dumpty but just wanted to say he backed out + max and nickals are both gay with each other
What do you call an octopus that fights sharks?
An octobrave.
Once upon a time, there were three kingdoms, all bordering on the same lake. For centuries, these kingdoms had fought over an island in the middle of that lake. One day, they decided to have it out, once and for all.
The first kingdom was quite rich, and sent an army of 25 knights, each with three squires. The night before the battle, the knights jousted and cavorted as their squires polished armor, cooked food, and sharpened weapons. The second kingdom was not so wealthy, and sent only 10 knights, each with 2 squires. The night before the battle, the knights cavorted and sharpened their weapons as the squires polished armor and prepared dinner. The third kingdom was very poor, and only sent one elderly knight with his sole squire. The night before the battle, the knight sharpened his weapon, while the squire, using a looped rope, slung a pot high over the fire to cook while he prepared the knight’s armor.
The next day, the battle began. All the knights of the first two kingdoms had cavorted a bit too much (one should never cavort while sharpening weapons and jousting) and could not fight. The squire of the third kingdom could not rouse the elderly knight in time for combat. So, in the absence of the knights, the squires fought.
The battle raged well into the late hours, but when the dust finally settled, a solitary figure limped from the carnage. The lone squire from the third kingdom dragged himself away, beaten, bloodied, but victorious.
And it just goes to prove, the squire of the high pot and noose is equal to the sum of the squires of the other two sides.